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ABSTRACT
Recently there is an increasing attention in heterogeneous
information network analysis, which models networked data
as networks including different types of objects and rela-
tions. Many data mining tasks have been exploited in het-
erogeneous networks, among which clustering and ranking
are two basic tasks. These two tasks are usually done sep-
arately, whereas recent researches show that they can mu-
tually enhance each other. Unfortunately, these works are
limited to heterogeneous networks with special structures
(e.g. bipartite or star-schema network). However, real data
are more complex and irregular, so it is desirable to design
a general method to manage objects and relations in het-
erogeneous networks with arbitrary schema. In this paper,
we study the ranking-based clustering problem in a general
heterogeneous information network and propose a novel so-
lution HeProjI. HeProjI projects a general heterogeneous
network into a sequence of sub-networks and an informa-
tion transfer mechanism is designed to keep the consistency
among sub-networks. For each sub-network, a path-based
random walk model is built to estimate the reachable proba-
bility of objects which can be used for clustering and ranking
analysis. Iteratively analyzing each sub-network leads to ef-
fective ranking-based clustering. Extensive experiments on
three real datasets illustrate that HeProjI can achieve bet-
ter clustering and ranking performances compared to other
well-established algorithms.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications-
Data Mining
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1. INTRODUCTION
Recently there is a surge of research on Heterogeneous In-

formation Network (HIN) in which objects are of different
types and links among objects represent different relations.
It is clear that this kind of networks is ubiquitous and forms
a critical component of modern information infrastructure
[5]. For example, in the case of bibliographic network (e.g.,
network schema of DBLP dataset shown in Fig. 1(c)), the
object types include authors, papers, venues; and links be-
tween objects correspond to different relations, such as write
relation between authors and papers.

Many data mining tasks have been exploited in HIN, such
as clustering [18], classification [7], and ranking [16]. The
link-based clustering attracts more and more attention, which
usually groups objects that are densely interconnected but
sparely connected with the rest of the network [10]. Also
with the booming of search engine, object ranking [2, 6] be-
comes an important data mining task, which evaluates the
importance of objects. Conventionally, clustering and rank-
ing are two independent tasks and they are usually used
separately. However, recent researches show that cluster-
ing and ranking can mutually promote each other and their
combination makes more sense in many applications [17, 19].
If we know the important objects in a cluster, we can under-
stand this cluster better; and the ranking in a cluster pro-
vides more subtle and meaningful information for clustering.
Although it is a promising way to do clustering and rank-
ing together, previous approaches are confined to a simple
HIN with special structure. For example, Sun et al. val-
idated the mutual improvement of clustering and ranking
in bipartite network [17] (an example shown in Fig. 1(a))
and star-schema network [19] (an example shown in Fig.
1(b)). Shi et al. [20] integrated clustering and ranking in
the hybrid network including heterogeneous and homoge-
neous relations. However, the data in real applications are
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(a) bip-

artite
(b) star-schema (c) DBLP (d) SLAP

Figure 1: Examples of heterogeneous information
networks. The letters are the abbreviation of differ-
ent types of objects (e.g., P : paper, A: author). The
details can be seen in Sec. 5.1.

usually more complex and irregular, which are beyond the
widely used bipartite or star-schema network. For example,
the bibliographic data (see an example in Fig. 1(c)) includes
not only heterogeneous relations but also homogeneous re-
lations (e.g., self loop on P ); the bioinformatics data [3]
(see an example in Fig. 1(d)) have more complex structure,
which includes multiple hub objects (e.g., C and G). So it
is desirable to design effective ranking based clustering al-
gorithm for these complex and irregular HIN data. Broadly
speaking, for HIN with arbitrary schema, we need to design
a general solution to manage the objects and their relations,
which is the basic for mining useful patterns on it.
Obviously, it is more practical and useful to determine the

underlying clusters and ranks on a general heterogeneous in-
formation network, but they are seldom exploited until now.
When we integrate ranking and clustering on a HIN with
arbitrary schema, it faces the following challenges. 1) A
general HIN has more complex structure. For a simple HIN
with a bipartite or star-schema structure, it is relatively easy
to manage heterogeneous objects and build models. How-
ever, a general HIN may have arbitrary schema, beyond the
bipartite or star-schema structure. Although an intuitive
way is to decompose it into multiple simpler sub-networks,
the issue is how we decompose the HIN without structural
information loss and maintain the consistency among the
decomposed sub-networks. 2) It is challenging to integrate
the clustering and ranking in a complex heterogeneous net-
work. We know that it is still a daunting task to separately
do clustering and ranking on a general HIN. Therefore, it is
more difficult to design an effective mechanism to combine
these two tasks on the HIN.
In this paper, we study the ranking-based clustering prob-

lem on a general HIN and propose a novel algorithm He-
ProjI to solve the Heterogeneous network Projection and
Integration of clustering and ranking tasks. In order to con-
veniently manage objects and relations in a HIN with ar-
bitrary schema, we design a network projection method to
project the HIN into a sequence of sub-networks without
structural information loss, where the sub-network may be
a relatively simple bipartite or star-schema network. More-
over, an information transfer mechanism is developed to
maintain the consistency across sub-networks. For each sub-
network, a path-based random walk method is proposed to
generate the reachable probability of objects, which can be
effectively used to estimate the cluster membership proba-
bility and the importance of objects. Through iteratively
analyzing each sub-network, HeProjI can obtain the steady
and consistent clustering and ranking results. We perform
a number of experiments on three real datasets to validate

the effectiveness of HeProjI. The results show that HeP-
rojI not only achieves better clustering and ranking accuracy
compared to well-established algorithms, but also effectively
handles complex HIN which cannot be handled by previous
methods.

2. RELATED WORK
Many data mining tasks have been exploited in hetero-

geneous information networks. According to the organiza-
tion methods of objects, contemporary work can be roughly
classified the following three types. 1) HIN is decomposed
to multiple homogeneous networks. Most network analysis
focus on homogeneous networks [10, 12]. However, the infor-
mation loss from the decomposition operation may induce
the inconsistency and unbalance among networks. 2) Bipar-
tite graph is widely used to organize two types of objects
and the relations among them, such as conference-author
[17] and author-document [21]. As an extended version, the
K-partite graphs [8] are able to represent the multiple types
of objects. However, they both ignore the homogeneous re-
lation among objects of same type. 3) HIN is usually orga-
nized as star-schema network [13, 19, 18] where a target type
is central node and connected by several attribute types.
Many data with the target-attribute relations can be repre-
sented with this schema, such as bibliographic data [19] and
movie data [13]. However, more real networked data may
have multiple hub types and homogeneous relations, which
cannot be represented with the star-schema network.

Recently, the clustering on heterogeneous network attracts
much attentions. Some of spectral clustering-based methods
confine to bi-type relational data [17]. The spectral clus-
tering methods are also developed for a general relational
data which are modeled as K-partite graphs [8]. Sun et
al. [18] presented a semi-supervised clustering algorithm
to generate different cluster results with path selection ac-
cording to user guidance. The ranking problem is also an
important task in data mining, which evaluates the impor-
tance of objects based on some ranking functions. Con-
ventional ranking tasks are set in homogeneous networks,
such as PageRank [2] and SimRank [6]. Recently, more and
more researches began to pay attention to the rank problem
in heterogeneous networks. For example, Sun et al. [16]
proposed PathSim to evaluate the similarity of same-typed
object pairs in HIN. Contemporary clustering and ranking
are usually done independently.

In recent years, ranking-based clustering algorithms il-
lustrate that ranking and clustering can mutually promote
each other. RankClus [17] is proposed to generate clusters
integrated with ranking, and theoretical and experimental
analysis show that the quality of clustering and ranking are
mutually enhanced. Furthermore, Sun et al. [19] studied
the clustering of multi-typed heterogeneous networks with
a star network schema and proposed NetClus to generate
high-quality net-clusters. However, these two algorithms are
confined to the specified network schema, i.e., RankClus and
NetClus only for the bipartite and star-schema networks, re-
spectively. Recently, Shi et al. [20] proposed the ComClus
to promote clustering and ranking performance on a kind
of hybrid network including the heterogeneous and homoge-
neous relations. In fact, ComClus is also confined to star
schema network with self loop. So these methods cannot be
directly applied to a general HIN with arbitrary schema.
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3. PROBLEM FORMULATION
In this section, we give the problem definition and some

important concepts used in this paper.

Definition 1. General heterogeneous information net-
work. Given a schema A = (T ,R) which consists of a set
of entities type T = {T} and a set of relations R = {R},
a general information network is defined as a graph G =
(X,E) with an object type mapping function τ : X → T and
link type mapping function ψ : E → R. Each object |T | >
1 or the types of relations |R| > 1, the network is called
heterogeneous information network; otherwise, it is a
homogeneous information network.

Fig. 1 shows the schema of several HIN examples. The
bipartite network in Fig. 1(a) only includes two types of
objects, and the widely used star-schema network [13, 19,
18] in Fig. 1(b) organizes objects in HIN with one target
type and several attribute types. However, a general het-
erogeneous information network may be more complex and
irregular. It may not only include homogeneous or heteroge-
neous relations, but also include multiple hub objects. Fig.
1(d) shows such a general HIN example. The object G has
heterogeneous relations (e.g., G→GO and G→C ) as well as
homogeneous relations (e.g., G→G). Moreover, the network
is beyond the star-schema because of multiple hub objects
(e.g., G and C ). It is clear that bipartite graph and star-
schema network is the special case of a general HIN.
For a general HIN, it is difficult to manage objects and re-

lations in the network. Although we can project it into sev-
eral homogeneous networks through assigning meta paths
as reference [4] did, it will loss much information among
different-typed objects. We know that, as the special case
of HIN, the bipartite and star-schema networks are relatively
easy to manage objects and relations in the network. So a
basic idea of handling a general HIN is to decompose it into
simpler networks. Following this idea, we design a novel
HIN projection method. Specifically, we can select one type
(called pivotal type) and its connected other types (called
supportive type). These types and their relations consti-
tute the schema of a projected sub-network of original HIN.
Formally, it can be defined as follows:

Definition 2. Projected sub-network. For a HIN with
schema A = (T ,R), its projected sub-network has the schema
A′ = (T ′,R′) where T ′ ⊂ T ,R′ ⊂ R, T ′ includes one piv-
otal type (denoted as P) and other types connected with P
(called supportive type, denoted as S = {S}). R′ includes
the heterogeneous relations between P and S and homoge-
neous relations among P (if existing).

A projected sub-network can be denoted as P − S. The
X(P ) is the object set of pivotal type, and X(S) represents
the object set of supportive type S. For convenience, the
projected sub-network is also called sub-network which can
be represented with its pivotal type P. For example, Fig.
2(c) shows the projected sub-network G− {C, T,GO} with
type G object (the one in red) as the pivotal type, while
types C, T and GO are the supportive types as they are
object types connected to object type G. Similarly, Fig.
2(b) and (d) show the projected sub-networks with pivotal
type objects GO and C, respectively.
It is clear that a HIN can be projected into a sequence of

sub-networks through selecting different pivotal types. So
we define the HIN projection concept as follows.

Figure 2: An example of HIN projection. The
pivotal type is marked with red color. The dot
line represents the information transfer among sub-
networks.

Definition 3. HIN projection. A HIN with t types of
objects can be projected into an ordered set of t projected
sub-networks by successively selecting one of the t types as
pivotal type.

Fig. 2 shows a projection example of SLAP network, a
bioinformatics dataset (details in Section 5.1). Through suc-
cessively selecting the 6 object types (GO,G,C and so on) as
pivotal type, the SLAP network is projected into a sequence
of 6 sub-networks. It is clear that the HIN projection has
the following properties.

Property 1. HIN projection is a structure-information
lossless network decomposition.

According to Def. 3, all objects and relations in original
HIN are in the projected sub-networks. That is to say, the
HIN can be reconstructed from the set of projected sub-
networks.

Property 2. Each projected sub-network in HIN projection
should be a bipartite graph or a star-schema network (with
self loop).

According to Def. 2, if there are two types of objects in
the sub-network, it is a bipartite graph; otherwise it is a
star-schema network. Note that, different from the conven-
tional bipartite and star-schema network, the pivotal type
in sub-networks may include the homogenous relation (i.e.,
self loop).

Property 3. HIN projection is not unique for a general
HIN.

A HIN has different projection sequences through select-
ing different orders of pivotal types. For example, the SLAP
network in Fig. 2 has the projection sequences: GO − G −
C − Si− Sub− T , T −G−GO − C − Si− Sub and so on.
In fact, a HIN with t types of objects has the t! projection
sequences in all.

Assume that J represents a type in type set {T}. The

object set can be denoted as X={X(J)}, and X(J)={X(J)
p }

where X
(J)
p is the object p ∈ X(J) (i.e., τ(p)=J). The re-

lations among objects include two types (homogeneous and
heterogeneous relations), which can be represented by the
two types of matrices homogeneous and heterogeneous
relation matrices, respectively. If type J has homogeneous
relation (e.g., the self loop on P in Fig. 1(c)), the homoge-

nous relation matrices can be written as H(J), where H
(J)
pq

denotes the relation between X
(J)
p and X

(J)
q . If two types (I

and J ) have heterogeneous relation (e.g., P−A in Fig. 1(c)),

the heterogeneous relation matrices can be written asH(I,J),
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where H
(I,J)
pq denotes the relation between X

(I)
p and X

(J)
q .

Correspondingly, we have homogeneous transition ma-
trixM (J) and heterogeneous transition matrixM (I,J).
It is clear that the transition matrix M (I,J) can be derived
from the relation matrix H(I,J) by M (I,J)=D(I,J)−1

H(I,J),
where D(I,J) is the diagonal matrix with the diagonal value
equaling to the corresponding row sum of H(I,J). Similarly,

M (J)=D(J)−1

H(J). Taking Fig. 1(c) as example, M (P )

is the transition probability matrix of the citation relation
H(P ), and M (A,P ) is the transition probability matrix of
the A − P relation H(A,P ). For given network structure,
we can derive the homogeneous and heterogeneous transi-
tion matrix. In the following section, we consider that the
transition matrix are known.
Different from conventional clustering in homogeneous net-

works, cluster in HIN should include different types of ob-
jects, where these objects share the same semantic meaning.
For example, in bibliographic data, a cluster about data min-
ing area includes venues, authors, and papers in this field.
For each type objectsX(J), we define themembership ma-

trix B(J|Ck) ∈ [0, 1]|X
(J)|×|X(J)|, which is a diagonal matrix

whose diagonal value represent the membership probability

of X
(J)
p belonging to the cluster Ck. Note that the sum

of membership probability of X
(J)
p in K clusters is 1 (i.e.,∑K

k=1B
(J|Ck)
pp =1). Now, we can formulate the problem of

clustering on a general HIN as follows. Given a heteroge-
neous network G=(X,E) and the semantic cluster number
K, our goal is to find a clusters set {Ck}Kk=1, where Ck is

defined as Ck = {{B(J|Ck)}J∈{T}}. In this way, it is a soft

clustering. That is, an object p in X(J) can belong to sev-
eral clusters, and it is in a cluster Ck with the probability

B
(J|Ck)
pp . Moreover, a cluster Ck can contain all kinds of

objects.

4. THE HEPROJI ALGORITHM
Through the HIN projection, it will become much easier to

analyze the HIN through handling a set of simple projected
sub-networks, since these sub-networks are bipartite or star
schema networks. However, it may result in a troublesome
business: how to maintain the consistency among different
sub-networks. To solve it, we design an information trans-
fer mechanism which inherits a portion of information from
other sub-networks to current one. In order to integrate the
clustering and ranking in a uniform framework, a model is
required to flexibly support these two tasks. Following this
idea, we build a probabilistic model to estimate the proba-
bility of supportive and pivotal objects in each sub-network.
Moreover, the probability of objects can effectively infer the
clustering information and represent the importance of ob-
jects.

4.1 Framework of HeProjI Algorithm
Specifically, we first project the original HIN into a se-

quence of sub-networks, and then randomly assign the piv-
otal objects of the first sub-network into K clusters (i.e.,
initialize {Ck}Kk=1). For each sub-network, a path-based
random walk method is proposed to estimate the reachable
probability of supportive objects in each cluster Ck and then
a generative model is used to obtain the probability of piv-
otal objects. After that, an EM algorithm is employed to
estimate the posterior probability of objects (i.e., the clus-

Algorithm 1 HeProjI: Detecting K clusters on HIN
Input:
Cluster number K and transition probability matrix M .

Output:
Membership probability B(J|Ck) of objects on each cluster{Ck}K

k=1

Project the HIN into a sequence of sub-networks

Randomly initialize the membership probability B(J|Ck)

repeat
Select the projected sub-network (P − S) in order
for cluster Ck ∈ C do

Establish the probability of supportive objects:

Pr(X(S)|Ck)

Generate the probability of pivotal objects: P (X(P )|Ck)

Estimate the posterior probability of objects: P (Ck|X(P )),

P (Ck|X(S))
end for
Rank the objects: Rank(X(P )|Ck), Rank(X(S)|Ck)

until the membership probability obtains convergence

tering information {Ck}Kk=1). According to probability of
objects, we can also calculate their ranking in each clus-
ter. The above step is repeated until convergence. In the
iterative process, the clustering and ranking can mutually
promote each other until they reach a steady result. The
basic framework of HeProjI is shown in Algorithm 1. In the
following sections, we will present these operations in detail.

4.2 Reachable Probability Estimation of Ob-
jects

4.2.1 Basic idea
As we have noted that the built probabilistic model can

not only support the clustering and ranking tasks but also
maintains the consistency among sub-networks. So the de-
sign of the model should obey the following two rules. 1)
PageRank principle. In order to support the ranking task,
the probability of objects should be able to reflect their
ranks. In other words, the probability of objects should
be positively correlated to the node degree. 2) Consistency
principle. In order to maintain the consistency among sub-
networks, an effective mechanism should be designed to trans-
fer appropriate information among sub-networks.

For the first rule (i.e., PageRank principle), the random
walk is an apparent solution. However, it is traditionally
used in homogeneous networks [6, 2]. Although it is also
used in bipartite graph [21], it is seldom applied in HIN.
Sun et al. [19] employed it to estimate the probability of at-
tribute objects in a star-schema network, while it is confined
to two types of objects. Heterogeneous objects and link se-
mantics make it difficult to directly employ random walk in
HIN. In a projected sub-network, there are different types of
supportive objects and they are connected through pivotal
objects. So the random walk among objects should follow
the specified paths. That is, the random walkers among
supportive objects would need to pass through the pivotal
objects. As a consequence, we need to estimate the prob-
ability of supportive and pivotal objects separately. The
reachable probability of a supportive object can be calcu-
lated as the sum of the probability of walkers from other
supportive objects walking to it through the pivotal type.
The probability of pivotal objects can be generated through
its reachable supportive objects. Because the bipartite net-
work only contains one supportive type, the probability of
supportive object can be calculated by the sum of proba-
bility of walkers from the same type of objects walking to
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(a) star-schema network (b) bipartite network

Figure 3: Illustration of the probability estimation
process for supportive and pivotal objects. The
black dash-dot line represents the random-walk pro-
cess among supportive objects and the blue dotted
line represents the generative process of pivotal ob-
jects.

it through the pivotal type. Fig. 3 shows the probability
estimation process. The reachable probability of type C can
be calculated by random-walkers wandering from type GO
and T to type C through type G in Fig. 3(a).
For the second rule (consistency principle), it is an in-

tuitive idea to transfer information among sub-networks.
However, what and how do we transfer? It is clear that
the sub-networks are overlapped. If we transfer the infor-
mation of any overlapping types, the model may be hard to
control, since two sub-networks may have many overlapping
types and one type may appear in many sub-networks. If
we do clustering on each sub-network individually, it is dif-
ficult to map clusters among sub-networks. We know that
the random walk among supportive objects all pass through
pivotal objects. So we only need to transfer the information
of pivotal type, and then the information can be propagated
to other supportive objects by random walkers. In order
to maintain the clustering consistency during the iteration,
we let the pivotal objects in the current sub-network in-
herit a portion of clustering information from previous sub-
networks with a controlling parameter. The dot line in Fig.
2 shows two information inheritance examples. Specifically,
the information on object G calculated in Fig. 2(b) is passed
on to the calculation of the pivotal object G in Fig. 2(c)
which affects the calculation of object C, while the infor-
mation on object C is then passed on to the calculation of
pivotal object C in Fig. 2(d).

4.2.2 Reachable Probability for Supportive Objects
First, we estimate the probability of supportive objects.

The path-based random walk process is formulated with

matrix representation. We use M (SI ,SJ |P,C) to represent
the probability transition matrix from supportive type SI

to type SJ passing pivotal type P in the sub-network C.

M (SI ,SJ |P,C) can be calculated as follow:

M (SI ,SJ |P,C) =M (SI ,P |C) ×M (P,SJ |C) (1)

where M (SI ,P |C) is the transition matrix from SI to P (i.e.,

M (SI ,P )). Compared to conditional transition matrixM (SI ,SJ |P,Ck)

defined below, M (SI ,SJ |P,C) is also called the global transi-
tion matrix, which is fixed for the sub-network C. For exam-
ple, in Fig. 3(a), the global transition matrix M (T,GO|G,C)

means the transition probability from type T to GO through
G on the sub-network G − {T,C,GO}. In the proposed
model, the global probability of objects is important infor-
mation to smooth the probability of pivotal objects (see Eq.

8 for more details).

When considering the clustering information, the transi-
tion matrices among supportive objects should be adjusted
according to clusters. The clustering information can be
represented by the membership matrix of pivotal objects,
so the conditional transition matrix from SI to SJ through

P in the cluster Ck (i.e., M (SI ,SJ |P,Ck)) can be defined as
follows:

M (SI ,SJ |P,Ck) =M (SI ,P |C) ×B(P |Ck) ×M (P,SJ |C) (2)

where B(P |Ck) is the membership of pivotal objects on clus-
ter Ck.

The above transition matrices only consider the cluster-
ing information in the current sub-network, which may cause
the inconsistency among different sub-networks. For exam-
ple, in the bibliographical data shown in Fig. 1(c), clus-
tering on the sub-network P − {A, V, T} may focus on re-
search areas, while clustering on the sub-network A − {P}
may more concern about co-author relations. In order to
keep the clustering consistency among sub-networks, we can
inherit a portion of cluster information from previous sub-
networks. Only the clustering information of pivotal type is
inherited from previous networks and it is integrated with
current clustering information of pivotal type. The reason
why the simple mechanism work is that the pivotal objects,
as hub node, can propagate the clustering information to all
supportive objects. The transition matrices can be redefined
as:

B′′(P |Ck) = θS,P ×B′(P |Ck) + (1− θS,P )×B(P |Ck) (3)

M (SI ,SJ |P,Ck) =M (SI ,P |C) ×B′′(P |Ck) ×M (P,SJ |C) (4)

where B′(P |Ck) is the inherited membership matrix when
the type P serves as a supportive type in the sub-network
whose pivotal type is S; and the θS,P is a learning rate
parameter that controls the ratio of information inheritance
from previous sub-network (pivotal type is S) to current one
(pivotal type is P ). The dot line in Fig. 2 illustrates the
two examples of information inheritance. The new transi-
tion matrix has the following advantages. 1) It transfers the
clustering information among sub-networks, which keeps the
consistency of sub-networks. 2) It helps to speed up the con-
vergence, since the priori clustering information is adopted.
For a bipartite network, the transition probability matrix

can be denoted as M (SI ,SI |P,Ck), which has the same calcu-
lation mechanism.

The conditional probability of supportive type SJ on sub-

network C and cluster Ck are denoted as Pr(X(SJ )|C) ∈
[0, 1]1×|X(SJ )| and Pr(X(SJ )|Ck) ∈ [0, 1]1×|X(SJ )|. Inspired
the PageRank [2], the probability of one type of objects is
decided by the reachable probability from other types of ob-
jects through pivotal objects. So the conditional probability
of supportive type SJ can be defined as follows.

Pr(X(SJ )|C) =
∑

SI∈S,SI ̸=SJ

Pr(X(SI )|C)×M (SI ,SJ |P,C) (5)

Pr(X(SJ )|Ck) =
∑

SI∈S,SI ̸=SJ

Pr(X(SI )|Ck)×M (SI ,SJ |P,Ck) (6)

The calculation is an iterative process and Pr(X(SJ )|Ck)
is initialized as the even value at the first iteration. For a
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bipartite network, random walkers start from type SJ and
end up with the same type through the pivotal type P . The

probability of supportive type SJ , Pr(X(SJ )|Ck) can be de-

fined as Pr(X(SJ )|Ck) = Pr(X(SJ )|Ck)×M (SJ ,SJ |Ck).

4.2.3 Reachable Probability for Pivotal Objects
Then we estimate the probability of pivotal objects. We

can consider the pivotal objects are generated by adjacent
supportive objects, so a generative model can be adopted
here. The probability of pivotal objects comes from two
parts: heterogeneous and homogeneous relations (if the piv-
otal type has self loop). For heterogeneous relations, the het-
erogeneous probability of pivotal object p in the sub-network

C (i.e., Pr(X
(P )
p |C)) can be calculated as follows:

Pr(X(P )
p |C) =

∏∏
SJ∈Sq∈N(p)

Pr(X(SJ )
q |C) (7)

where N(p) is the set of neighbors of object p in the sub-
network. It means the pivotal object p is generated by the
different types of adjacent supportive objects. Then, we
consider the probability of pivotal object p in a cluster Ck

(i.e., Pr(X
(P )
p |Ck)). Similarly, the probability is also gener-

ated from the adjacent supportive objects in the cluster Ck.
In addition, we add the global probability of pivotal object

X
(P )
p to smooth the probability:

Pr(X(P )
p |Ck) = λ

∏∏
SJ∈Sq∈N(p)

Pr(X(SJ )
q |Ck)+(1−λ)Pr(X(P )

p |C)

(8)
where the smooth parameter λ represents the portion of
global probability. The smooth operation is an important
component due to following reasons. 1) It prevents piv-
otal objects from accumulating into minority clusters, which
helps to improve the clustering accuracy. 2) It makes the
probability change of pivotal objects more steady, which
can improve the stability of HeProjI. The experiments in
Sec. 5.7 also validate the importance of smooth operation.
For homogeneous relations (i.e., the pivotal object has self

loop), we can calculate the cluster based homogeneous tran-
sition probability for pivotal type as follows:

M (P |Ck) =M (P |C) ×B(P |Ck) (9)

M
(P |Ck)
.p denotes the sum of transition probability of other

pivotal objects reaching p in cluster Ck, which represents
the importance of object p to some extent.
When considering the homogeneous relations (if existing),

the probability of pivotal object p is generated by the hetero-
geneous and homogeneous relations, so it can be calculated
as follows:

P (X(P )
p |Ck) = Pr(X(P )

p |Ck)×M (P |Ck)
.p . (10)

4.3 Posterior Probability for Objects
In order to determine the membership of objects, we need

to estimate posterior probability of objects. In each sub-
network, there are two kinds of objects (i.e., pivotal and
supportive objects). Because pivotal objects are the hub of
sub-network that integrate supportive objects and contain
complete semantic information, we first estimate the pos-
terior probability of pivotal objects, and then the posterior
probability of supportive objects is decided by that of piv-
otal objects.

Now we consider how to estimate the posterior probability
of pivotal objects P (Ck|X(P )). According to the Bayesian

rule, P (Ck|X(P )) ∝ P (X(P )|Ck)× P (Ck). Since the cluster
size P (Ck) is unknown, we need to estimate an appropriate
P (Ck) to balance the cluster size. We use the P (Ck) that
maximizes the likelihood of generating pivotal objects in dif-
ferent clusters. The likelihood of pivotal objects is defined
as:

logL =
∑

p∈X(P )

log[

K∑
k=1

P (X(P )
p |Ck)× P (Ck)]. (11)

An EM algorithm can be utilized for the latent P (Ck)
by maximizing the logL. We can derive the Eq. 12 and
13. Initially, we set the P (Ck) with even values and then
repeat the E step (i.e., Eq. 12) and M step (i.e., Eq. 13)
to iteratively update the latent cluster probability until the
P (Ck) obtains convergence.

P t(Ck|X(P )) ∝ P (X(P )|Ck)× P (Ck) (12)

P t+1(Ck) =
∑

p∈X(P )

P t(Ck|X(P )
p )× 1

|X(P )|
(13)

Next we estimate the posterior of supportive objects. The
basic idea is that the posterior probability of supportive ob-
jects comes from its pivotal neighborhoods. We define it as
follow:

P (Ck|X(SJ )
q ) =

∑
p∈N(q)

P (Ck|X(P )
p )× 1

|N(q)| (14)

where P (Ck|X(SJ )
q ) is the probabilities of supportive object

X
(SJ )
q belonging to cluster Ck; N(q) is the neighbor set of

supportive object q. It means that the posterior probability

of supportive object X
(SJ )
q is the average value of its pivotal

neighborhoods.

4.4 Ranking for Objects
Since the probability model obeys the PageRank principle,

we can regard the conditional probability of objects as their
ranks.

Rank(X(J)) ≈ P (X(J)|Ck) (15)

Because the conditional probability P (X(J)|Ck) in HeP-
rojI is estimated by the random walk process, it may prefer
to assign a higher probability to an object with a higher de-
gree. However, in some applications, the link-number based
measure is not proper. For example, advertisement webpage
may have many poor value links (i.e., high degree but low
rank).

If we know the additional information of objects, which
can be used to measure the importance of objects, we can in-
tegrate the information into the proposed method and then
get the more reasonable rank. Based on the conditional
probability of objects, we propose a general ranking method
for objects as follows:

Rank(X(J)) = AI(X(J))× P (X(J)|Ck) (16)

where the AI(X(J)) is the Additional Importance measure

(AI) of objects X(J). For example, in bibliographic network,
the importance of a paper is decided by its citations to a
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large extent, and the AI can be a measure that is propor-
tion to citations. We can also propagate the AI information
to adjacent objects by transition probability matrix. It is
denoted as follows:

Rank(X(I)|Ck) = Rank(X(J)|Ck)×M (J,I). (17)

4.5 Time Complexity Analysis
Time complexity of HeProjI is composed of two main

parts: 1) analyzing each sub-network; 2) handling the pro-
jection sequence. In each sub-network, the complexity of es-
timating the distribution of supportive objects isO(t1K|E||S|)
where |E| is the number of edges in this sub-network, |S|
is the number of supportive nodes, and t1 is the iteration
number and K is the cluster number. The complexity of
estimating the distribution of pivotal objects is O(K|Ep|)
where |Ep| is the number of edges of pivotal objects. Then
the time complexity of calculating posterior probability for
pivotal objects is O(t2K|P |) where t2 is the iteration times,
|P | is the number of pivotal objects. Similarly, the pos-
terior probability for supportive objects has the complex-
ity O(K|E|). So the complexity for each sub-network is
O(t3K(t1|E||S|+ |Ep|+ t2|P |+ |E|)) where t3 is the itera-
tion number for clustering adjustment in this sub-network.
Besides, HeProjI has a projection sequence which selecting
different object as the pivotal type. And thus the whole time
complexity is O(t4|T |t3K(t1|E|S+|Ep|+t2|P |+|E|)), where
|T | is the number of type and t4 is the iteration of cluster-
ing. Omitting tiny and constant items, the time complexity
of HeProjI can be summarized by O(c1|E|+ c2|P |).
5. EXPERIMENTS
In this section, we evaluate the effectiveness of HeProjI,

and compare it with several state-of-art methods on three
real datasets.

5.1 Datasets
In this paper, we use two real information networks: DBLP

and SLAP. These two networks are summarized as follows
and their schemas are shown in Fig. 1(c) and (d).
1. DBLP dataset. The dataset is about bibliographic

information in computer science domain, which constructs
a HIN with four types of objects (paper (P ), author (A),
venue (V ), and term (T )) and their relations. To evaluate
the clustering accuracy, we randomly label 1031 papers and
1295 authors with their research areas. In experiments, we
extract two different-scaled subsets of the DBLP which are
called DBLP-S and DBLP-L, respectively.
DBLP-S: It is a small size dataset which includes three

research areas: database (DB), data mining (DM), and in-
formation retrieval (IR). There are 21 venues, 25020 papers,
10907 authors and 14940 terms extracted from paper title.
DBLP-L: It is a large dataset which includes 8 areas:

computer network, information security, computer architec-
ture, theory, software engineering & programming language,
artificial intelligence & pattern recognition, computer graph-
ics, data mining & information retrieval & database. It
has 280 venues (35 venues for each area), 275,649 papers,
238,673 authors and 295,123 terms.
2. SLAP dataset [3]. This dataset integrates several

well-known bioinformatics datasets (e.g., PubChem, Drug-
Bank, PPI) into a single framework using semantic web
technologies for drug discovery. Here SLPA is a simple ver-
sion which includes 6 types of objects (i.e., gene (G), gene-

ontology (GO), chemical compound (C), tissue (T ), side ef-
fect (Si), substructure (Sub)) and their relations. There are
323 genes, 38,116 compounds, 672 kinds of side effect, 212
kinds of substructure, 170 tissues, 948 gene ontologies and
105,387 links among these objects. We have known a priori
that these genes are affiliated to 5 gene families, which are
considered as the labels of genes.

5.2 Clustering Effectiveness Study
In this section, we study the clustering effectiveness of

HeProjI through comparing it with other well-established
algorithms.

The first experiment is done on DBLP dataset, since this
dataset has a relatively simple structure and is suitable for
comparison with previous algorithms. The representative
algorithms are included in experiments, which are summa-
rized as follows.

• HeProjI. It is the proposed algorithm.
• HeProjI\S . It is HeProjI without considering the smooth infor-

mation from general network (i.e., λ is 1 in Eq. 8).
• HeProjI\I . It is HeProjI without considering inheriting informa-

tion from other sub-networks (i.e., Θ is 0 in Eq. 3).
• ComClus [20]. It is a ranking-based clustering method designed

for the star-schema network with self loop.
• NetClus [19]. It is a ranking-based clustering method designed

for the star-schema network without self loop.
• iTopicModel [15]. It integrates topic model and heterogeneous

link information, so it can be used to do clustering in HIN.
• NetPLSA [9]. It regularizes a statistical topic model with a har-

monic regularizer based on a graph structure.

The clustering quality is measured by the fraction of ver-
tices identified correctly, FVIC [10, 12], which evaluates the
average matching degree by comparing each predicting clus-
ter with the most matching real cluster. The larger the
FVIC is the better the partition is. HeProjI, ComClus and
NetClus can be applied to DBLP dataset directly. For Net-
Clus, we do not consider the self loop of type P , since Net-
Clus cannot solve it. Note that RankClus [17] is not included
here, because it only solves the bipartite network. Moreover,
for iTopicModel and NetPLSA, we make a homogeneity as-
sumption of links so that it can be applied to this dataset.
The smoothing parameter λ in HeProjI is fixed at 0.9. All
learning rate Θ are fixed at 0.3. In HeProjI, the projection
sequence of is P − A− C − T . The parameters in other al-
gorithms are set with the suggested values in their literals.

Table 1: Clustering accuracy for DBLP dataset

Accuracy
Paper Venue Author Paper

(DBLP-S) (DBLP-S) (DBLP-S) (DBLP-L)

HeProjI
Mean 0.857 0.823 0.725 0.603
Dev. 0.043 0.047 0.034 0.071

HeProjI\S
Mean 0.781 0.753 0.698 0.566
Dev. 0.077 0.069 0.057 0.113

HeProjI\I
Mean 0.703 0.681 0.605 0.507
Dev. 0.053 0.045 0.039 0.083

ComClus
Mean 0.764 0.775 0.690 0.576
Dev. 0.020 0.027 0.015 0.024

NetClus
Mean 0.742 0.718 0.689 0.566
Dev. 0.063 0.065 0.051 0.104

iTopicModel
Mean 0.512 0.762 0.587 0.361
Dev. 0.072 0.094 0.073 0.167

NetPLSA
Mean 0.466 0.565 0.316 0.338
Dev. 0.047 0.081 0.023 0.092

From the results shown in Table 1, we can observe that
HeProjI achieves the best accuracy and lower standard devi-
ation on all objects. HeProjI\S also has good performances.
However, due to omitting the smoothing operation, it has
worse performances and stability when compared to HeP-
rojI. The performances of HeProjI\I degrade greatly, since
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Table 2: Clustering accuracy for SLAP dataset

Accuracy
HeProjI NCut

Mean Dev. Mean Dev.

Gene 0.68 0.057 0.355 0.165
Chemical Compound 0.437 0.031 0.307 0.091

Gene Ontology 0.557 0.026 0.261 0.088
Tissue 0.407 0.066 0.293 0.09

Side Effect 0.548 0.098 0.25 0.056
Substructure 0.481 0.053 0.314 0.102

it does not inherit clustering information from other sub-
networks. In this condition, HeProjI\I analyzes these sub-
networks independently, so the inconsistency among sub-
networks causes its bad performances. NetClus and Com-
Clus both have respectable results. However, the absence
of citation information among papers may lead to NetClus’s
worse performances when it is compared with ComClus. The
iTopicModel and NetPLSA methods ignore the heterogene-
ity of objects and relations, so their performances are bad.
For SLAP network, contemporary methods cannot solve it

directly. In order to compare with other algorithms, we con-
vert the SLAP network into a homogeneous network through
ignoring the heterogeneity of objects. As a comparison al-
gorithm, the classical spectral clustering algorithm, NCut
[14], is run on the homogeneous network. The projection se-
quence is GO−G−C−T −Sub−Si. HeProjI uses the same
parameters with the above experiments, except the learning
rate Θ[θG,GO, θGO,G, θG,C , θG,T , θC,Sub, θC,Si] = [0.3, 0.5, 0.7,
0.7, 0.7, 0.7]. The results are shown in Table 2. It is clear
that HeProjI performs much better than NCut. We know
that there are distinct differences on different types of ob-
jects and relations, e.g., 70, 672 links in G− C relation and
2222 links in G−GO relation. If we do not consider object
types, as NCut does, the clusters may be serious unbalanced,
which results in the bad performances of NCut.

5.3 Ranking Effectiveness Study
To evalute the ranking effectiveness of HeProjI, we make a

ranking accuracy comparison between HeProjI and NetClus.
We utilize the venues rank recommended by Microsoft Aca-
demic Search [1] as the ground truth. In order to measure
the quality of the ranking result, we employ the Distance
criterion proposed in [11], which computes the differences
between two ranking lists of the same set of objects. The
criterion not only measures the number of mismatches be-
tween two lists but also gives a big penalty term to top
mismatch objects in the lists. The smaller Distance means
the better performance.

(a) Top 5 on
DBLP-S

(b) Top 10 on
AI&PR of DBLP-
L

(c) Top 10 on
DBLP-L

Figure 4: Ranking accuracy comparison on top
venues (the smaller Distance, the better perfor-
mance).

Three algorithms are tested on the DBLP dataset. In
addition to NetClus, there are two versions of HeProjI (He-
ProjI with/without AI). The citations of paper are used as

the AI measure. We extract the top 5 and 10 venues in differ-
ent research areas and then calculate the Distance measure
for them. Additionally, we also compare the accuracy of the
global rank on both HeProjI and NetClus. The comparison
results are shown in Fig. 4. We can find that two versions
of HeProjI achieve better rank performances compared with
NetClus in the most cases, since their Distance get lower
values. Moreover, the HeProjI-AI performs better than He-
ProjI. In DBLP dataset, the citation information of papers
(i.e., AI) reflects the quality of the papers to a large extent.
So integrating the AI in HeProjI helps to improve the rank
accuracy of papers. Moreover, the citation information can
also promote the ranking accuracy of venues through the
P − V relation (see Eq. 17). So HeProjI-AI achieves the
best ranking performances.

5.4 Case Study
We compare the ranking effectiveness of HeProjI and Net-

Clus with a case study on DBLP dataset. We use the
global rank to prove the ranking effectiveness of the He-
ProjI method. Table 3 shows the top 15 venues ranked by
HeProjI and NetClus on DBLP-S. From these results, the
ranks of venues generated by HeProjI-AI more conform to
the intuition. Although it is hard to rank conferences across
different areas, the order within each area is more or less
established and the HeProjI-AI confirms with that order.
For example, in the DB area, it is SIGMOD, VLDB and
ICDE, while in the data mining area, it is KDD, ICDM, and
PKDD. However, there are some out of order venues gener-
ated by NetClus. For example, among the database confer-
ences, SIGMOD is ranked after VLDB and ICDE. Because
NetClus cannot combine additional AI information (i.e., the
citations of papers) and tends to get the rank which is propo-
tion to its link number, it has the tendency to rank a good
venue publishing a smaller number of papers with a lower
rank (e.g., PODS) and a venue publishing a larger number of
papers with higher rank (e.g., DEXA). Besides, for HeProjI
which does not consider AI information, the rank of venues
is basically proportional to their links, since the probability
of objects are generated by a random-walk based method.
The experiments reflect that the HeProjI method can flexi-
bly and effectively integrate heterogeneous informations and
achieve more reasonable ranks.

5.5 Convergence and Stability Study
Now, we study the convergence and stability of HeProjI

on the DBLP dataset. The entropy is able to measure the
unpredictability of a cluster as well as the convergence of
algorithm. We can define the following entropy:

AvgEntropy(X(J)) = −
1

K

K∑
k=1

|X(J)|∑
p=1

P (Ck|X
(J)
p )logP (Ck|X

(J)
p ).

(18)

Fig. 5 shows the comparison of AvgEntropy of HeProjI
and NetClus on different types of objects of DBLP-S. We
can observe that the HeProjI achieves lower AvgEntropy on
all conditions. We think the reason is that the HeProjI
method rationally combines more information from all types
of objects. It helps HeProjI to achieve steady solution.

5.6 Time Complexity Study
We recorded the running time of each sub-network in He-

ProjI along with the iterations on DBLP-S and SLAP in the
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Table 3: Top 15 venues in 3 clusters on DBLP-S

Rank 1 2 3 4 5 6 7 8

HeProjI-AI
Venue SIGMOD VLDB SIGIR ICDE KDD PODS WWW CIKM

#Papers 2428 2444 2509 2832 1531 940 1501 2204

HeProjI
Venue ICDE SIGIR VLDB SIGMOD CIKM DEXA KDD WWW

#Papers 2832 2509 2444 2428 2204 1731 1531 1501

NetClus
Venue VLDB ICDE SIGMOD SIGIR KDD WWW CIKM ICDM

#Papers 2444 2832 2428 2509 1531 1510 2204 1436

Rank 9 10 11 12 13 14 15

HeProjI-AI
Venue ICDM EDBT PKDD WSDM PAKDD DEXA WebDB

#Papers 1436 747 680 198 1030 1731 972

HeProjI
Venue ICDM PAKDD PODS EDBT PKDD ECIR WSDM

#Papers 1436 1030 1436 747 680 575 198

NetClus
Venue PODS DEXA PAKDD EDBT PKDD WSDM ECIR

#Papers 940 1731 1030 747 680 198 575

(a) Papers (b) Authors (c) Venues

Figure 5: The change of AvgEntropy with iterations.

(a) DBLP-S (b) SLAP

Figure 6: The time of analyzing sub-networks in He-
ProjI along with the iterations. The pivotal type
represents the corresponding sub-networks.

experiments of Sec. 5.2. The results are shown in Fig. 6.
We can observe that the complex sub-networks (including
more object types and more links) cost much more running
time, such as the sub-network P − {A, T,C} in Fig. 6(a)
and G − {T,GO,C} in Fig. 6(b). It is reasonable, since
more links and nodes need to be handled in this condition.
Moreover, the analysis time of each sub-network decreases
along the iteration. We think the prior knowledge inherited
from previous iterations on the sub-networks helps to fas-
ten convergence. Although the iteration process in HeProjI
results in its higher time complexity, the time used in each
iteration drops down quickly in most cases.

5.7 Parameter Study
There is a set of parameters in HeProjI: the learning rate

vector (i.e., Θ) and the smoothing parameter λ. With the
AvgEntropy and clustering accuracy for different types of
objects, we discuss the effect of different parameter settings
on HeProjI.
The smoothing parameter λ is used to control the portion

of global probability utilized by each cluster (see Eq. 8).
We run HeProjI on DBLP-S with different λ. The results
are shown in Fig. 7. Fig. 7(a) shows that HeProjI achieves
better performances when λ is from 0.5 to 0.9. It implies
that the appropriate global information is helpful for clus-

(a) Average accuracy (b) Paper AvgEntropy

Figure 7: Accuracy and AvgEntropy with different
λ.

(a) Average accuracy (b) Paper AvgEntropy

Figure 8: Accuracy and AvgEntropy of HeProjI
with different Θ.

tering. Too much (λ is small) or no global information (λ is
1) both will degrade the performances of HeProjI. Fig. 7(b)
also illustrates that the appropriate global information (i.e.,
λ ∈ [0.5, 0.9]) will benefit for the stability and convergence
of algorithms.

The learning rates (i.e., Θ) are important parameters which
control how much information learned from other sub-networks.
We run HeProjI on DBLP-S to observe the effect of Θ on
clustering accuracy and convergence. In this experiment, we
fixed the smooth parameter λ with 0.9. For convenience, we
set the elements of vector Θ with a unified value. From Fig.
8, we can observe that the algorithm accuracy first increases
and then decreases with the increment of Θ. It illustrates
that either excessive or little information from other sub-
networks degrades the algorithm performances. We think it
is proper to set the learning rate vector Θ in the range of
[0.3, 0.5]. Note that, we set the learning rate with a uni-
form value for all parameters. However, the learning rate
can be different for different sub-networks in real applica-
tions. For exmaple, HeProjI achieves good performances
on SLAP dataset when setting different learning rates for
sub-networks (see Sec. 5.2).
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(a) DBLP (b) SLAP

Figure 9: Clustering accuracy of objects with differ-
ent projection sequences.

5.8 Projection Order Study
In this experiment, we discuss the impact of different pro-

jection sequences (i.e., the order of analyzing sub-networks).
The experiments are done on DBLP-S and SLAP datasets
and the same parameters of HeProjI are set with that of
Sec. 5.2. Under different projection sequences, the cluster-
ing accuracy of objects are shown in Fig. 9.
On one hand, at first glance, the differences of cluster-

ing accuracy are small under different projection sequences,
which illustrates HeProjI is not very sensitive to the se-
quence of analyzing sub-networks. On the other hand, we
can also observe that HeProjI consistently has bad perfor-
mances on all objects under some sequences, such as the se-
quence T−G−GO−C−Si−Sub in Fig. 9(b). We think the
reason lies in the type T objects has a small number of links
to other types of objects, so the successive sub-networks can
inherit little useful information from it. Although the order
of analyzing sub-networks does not have large impact on
the performance of HeProjI, we still suggest that HeProjI
selects the sub-network whose pivotal type with rich infor-
mation (e.g., P type in DBLP) or clear semantic meanings
(e.g., GO type in SLAP) first.

6. CONCLUSIONS
This paper studied the ranking-based clustering problem

in a general heterogeneous information network and pro-
posed a novel algorithm HeProjI. For a general HIN with
arbitrary schema, HeProjI projects it into a sequence of
projected sub-networks and iteratively analyzes each sub-
network. For each sub-network, a path-based random walk
model is built to estimate the reachable probability of ob-
jects which can effectively be used for clustering and ranking
analysis. The experiments show that HeProjI achieves bet-
ter clustering and ranking result than other representative
algorithms.

7. ACKNOWLEDGMENTS
This work is supported by the National Basic Research

Program of China (2013CB329603), the National Science
Foundation of China (Nos. 61375058, and 71231002), the
Ministry of Education of China and China Mobile Research
Fund (MCM20130351) and the Beijing Higher Education
Young Elite Teacher Project.

8. REFERENCES
[1] http://academic.research.microsoft.com.

[2] S. Brin and L. Page. The anatomy of a large-scale
hyper textual web search engine. Comput. Netw. ISDN
Syst, 30(1-7):1757-1771, 1998.

[3] B. Chen, Y. Ding, and D. Wild. Assessing drug target
association using semantic linked data. PLoS Comput.
Biol., 8(7): 1757-1771, 2012.

[4] M. Grcar and N. Lavrac. A methodology for mining
document-enriched heterogeneous information networks.
In Discovery Science, pages 107-121, 2011.

[5] J. Han. Mining heterogeneous information networks:
the next frontier. In KDD, page Keynote speech, 2012.

[6] G. Jeh and J. Widom. Simrank: a measure of
structural-context similarity. In KDD, pages 538-543,
2002.

[7] M. Ji, J. Han, and M. Danilevsky. Ranking-based
classification of heterogeneous information networks. In
KDD, pages 1298-1306, 2011.

[8] B. Long, X. Wu, Z. Zhang, and P. S. Yu. Unsupervised
learning on k-partite graphs. In KDD, pages 317-326,
2006.

[9] Q. Mei, D. Cai, D. Zhang, and C. Zhai. Topic modeling
with network regularization. In WWW, pages 101-110,
2008.

[10] M.E.J. Newman and M. Girvan. Finding and
evaluating community structure in networks. Physics
Review E, 69(026113):1757-1771, 2004.

[11] Z. Nie, Y. Zhang, J. R. Wen, and W. Y. Ma.
Object-level ranking: bringing order to web objects. In
WWW, pages 567-574, 2005.

[12] C. Shi, Z. Yan, Y. Cai, and B. Wu. Multi-objective
community detection in complex networks. Applied Soft
Computing, 12(2):850-859, 2012.

[13] C. Shi, C. Zhou, X. Kong, P. S. Yu, G. Liu and W.
Bai. Heterecom: a semantic-based recommendation
system in heterogeneous networks. In KDD, pages
1552-1555, 2012.

[14] J. Shi and J. Malik. Normalized cuts and image
segmentation. In CVPR, pages 731-737, 1997.

[15] Y. Sun, J. Han, J. Gao, and Y. Yu. Itopicmodel:
information network-integrated topic modeling. In
ICDM, pages 493-502, 2009.

[16] Y. Sun, J. Han, X. F. Yan, P. S. Yu, and T. Wu.
PathSim: meta path-based top-K similarity search in
heterogeneous information networks. In VLDB, pages
992-1003, 2011.

[17] Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T.
Wu. Rankclus: integrating clustering with ranking for
heterogeneous information network analysis. In EDBT,
pages 565-576, 2009.

[18] Y. Sun, B. Norick, J. Han, X. Yan, P. S. Yu, and X.
Yu. Integrating meta-path selection with user guided
object clustering in heterogeneous information networks.
In KDD, pages 1348-1356, 2012.

[19] Y. Sun, Y. Yu, and J. Han. Ranking-based clustering
of heterogeneous information networks with star network
schema. In KDD, pages 797-806, 2009.

[20] R. Wang, C. Shi, P. S. Yu, and B. Wu. Integrating
clustering and ranking on hybrid heterogeneous
information network. In PAKDD, pages 583-594, 2013.

[21] D. Zhou, S. Orshanskiy, H. Zha, and C. Giles.
Co-ranking authors and documents in a heterogeneous
network. In ICDM, pages 739-744, 2007.

708

http://academic.research.microsoft.com

	Introduction
	Related Work
	Problem Formulation
	THE HEPROJI ALGORITHM
	Framework of HeProjI Algorithm
	Reachable Probability Estimation of Objects
	Basic idea
	Reachable Probability for Supportive Objects
	Reachable Probability for Pivotal Objects

	Posterior Probability for Objects
	Ranking for Objects
	Time Complexity Analysis

	Experiments
	Datasets
	Clustering Effectiveness Study
	Ranking Effectiveness Study
	Case Study
	Convergence and Stability Study
	Time Complexity Study
	Parameter Study
	Projection Order Study

	Conclusions
	Acknowledgments
	References



